Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Role of protein-glutathione contacts in defining glutaredoxin-3 [2Fe-2S] cluster chirality, ligand exchange and transfer chemistry.

Identifieur interne : 000314 ( Main/Exploration ); précédent : 000313; suivant : 000315

Role of protein-glutathione contacts in defining glutaredoxin-3 [2Fe-2S] cluster chirality, ligand exchange and transfer chemistry.

Auteurs : Sambuddha Sen [États-Unis] ; J A Cowan [États-Unis]

Source :

RBID : pubmed:28836015

Descripteurs français

English descriptors

Abstract

Monothiol glutaredoxins (Grx) serve as intermediate cluster carriers in iron-sulfur cluster trafficking. The [2Fe-2S]-bound holo forms of Grx proteins display cysteinyl coordination from exogenous glutathione (GSH), in addition to contact from protein-derived Cys. Herein, we report mechanistic studies that investigate the role of exogenous glutathione in defining cluster chirality, ligand exchange, and the cluster transfer chemistry of Saccharomyces cerevisiae Grx3. Systematic perturbations were introduced to the glutathione-binding site by substitution of conserved charged amino acids that form crucial electrostatic contacts with the glutathione molecule. Native Grx3 could also be reconstituted in the absence of glutathione, with either DTT, BME or free L-cysteine as the source of the exogenous Fe-S ligand contact, while retaining full functional reactivity. The delivery of the [2Fe-2S] cluster to Grx3 from cluster donor proteins such as Isa, Nfu, and a [2Fe-2S](GS)4 complex, revealed that electrostatic contacts are of key importance for positioning the exogenous glutathione that in turn influences the chiral environment of the cluster. All Grx3 derivatives were reconstituted by standard chemical reconstitution protocols and found to transfer cluster to apo ferredoxin 1 (Fdx1) at rates comparable to native protein, even when using DTT, BME or free L-cysteine as a thiol source in place of GSH during reconstitution. Kinetic analysis of cluster transfer from holo derivatives to apo Fdx1 has led to a mechanistic model for cluster transfer chemistry of native holo Grx3, and identification of the likely rate-limiting step for the reaction.

DOI: 10.1007/s00775-017-1485-9
PubMed: 28836015


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Role of protein-glutathione contacts in defining glutaredoxin-3 [2Fe-2S] cluster chirality, ligand exchange and transfer chemistry.</title>
<author>
<name sortKey="Sen, Sambuddha" sort="Sen, Sambuddha" uniqKey="Sen S" first="Sambuddha" last="Sen">Sambuddha Sen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210</wicri:regionArea>
<wicri:noRegion>43210</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cowan, J A" sort="Cowan, J A" uniqKey="Cowan J" first="J A" last="Cowan">J A Cowan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA. cowan.2@osu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210</wicri:regionArea>
<wicri:noRegion>43210</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28836015</idno>
<idno type="pmid">28836015</idno>
<idno type="doi">10.1007/s00775-017-1485-9</idno>
<idno type="wicri:Area/Main/Corpus">000312</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000312</idno>
<idno type="wicri:Area/Main/Curation">000312</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000312</idno>
<idno type="wicri:Area/Main/Exploration">000312</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Role of protein-glutathione contacts in defining glutaredoxin-3 [2Fe-2S] cluster chirality, ligand exchange and transfer chemistry.</title>
<author>
<name sortKey="Sen, Sambuddha" sort="Sen, Sambuddha" uniqKey="Sen S" first="Sambuddha" last="Sen">Sambuddha Sen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210</wicri:regionArea>
<wicri:noRegion>43210</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cowan, J A" sort="Cowan, J A" uniqKey="Cowan J" first="J A" last="Cowan">J A Cowan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA. cowan.2@osu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210</wicri:regionArea>
<wicri:noRegion>43210</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry</title>
<idno type="eISSN">1432-1327</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Glutaredoxins (chemistry)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (chemistry)</term>
<term>Glutathione (metabolism)</term>
<term>Iron-Sulfur Proteins (chemistry)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Ligands (MeSH)</term>
<term>Oxidoreductases (chemistry)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Saccharomyces cerevisiae (chemistry)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (chemistry)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Stereoisomerism (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cinétique (MeSH)</term>
<term>Ferrosulfoprotéines (composition chimique)</term>
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Glutarédoxines (composition chimique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (composition chimique)</term>
<term>Glutathion (métabolisme)</term>
<term>Ligands (MeSH)</term>
<term>Oxidoreductases (composition chimique)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (composition chimique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Saccharomyces cerevisiae (composition chimique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Stéréoisomérie (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Iron-Sulfur Proteins</term>
<term>Oxidoreductases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Iron-Sulfur Proteins</term>
<term>Oxidoreductases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Ferrosulfoprotéines</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Oxidoreductases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Ferrosulfoprotéines</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Oxidoreductases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Kinetics</term>
<term>Ligands</term>
<term>Stereoisomerism</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Ligands</term>
<term>Stéréoisomérie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Monothiol glutaredoxins (Grx) serve as intermediate cluster carriers in iron-sulfur cluster trafficking. The [2Fe-2S]-bound holo forms of Grx proteins display cysteinyl coordination from exogenous glutathione (GSH), in addition to contact from protein-derived Cys. Herein, we report mechanistic studies that investigate the role of exogenous glutathione in defining cluster chirality, ligand exchange, and the cluster transfer chemistry of Saccharomyces cerevisiae Grx3. Systematic perturbations were introduced to the glutathione-binding site by substitution of conserved charged amino acids that form crucial electrostatic contacts with the glutathione molecule. Native Grx3 could also be reconstituted in the absence of glutathione, with either DTT, BME or free L-cysteine as the source of the exogenous Fe-S ligand contact, while retaining full functional reactivity. The delivery of the [2Fe-2S] cluster to Grx3 from cluster donor proteins such as Isa, Nfu, and a [2Fe-2S](GS)
<sub>4</sub>
complex, revealed that electrostatic contacts are of key importance for positioning the exogenous glutathione that in turn influences the chiral environment of the cluster. All Grx3 derivatives were reconstituted by standard chemical reconstitution protocols and found to transfer cluster to apo ferredoxin 1 (Fdx1) at rates comparable to native protein, even when using DTT, BME or free L-cysteine as a thiol source in place of GSH during reconstitution. Kinetic analysis of cluster transfer from holo derivatives to apo Fdx1 has led to a mechanistic model for cluster transfer chemistry of native holo Grx3, and identification of the likely rate-limiting step for the reaction.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28836015</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>12</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1327</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>22</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2017</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry</Title>
<ISOAbbreviation>J Biol Inorg Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Role of protein-glutathione contacts in defining glutaredoxin-3 [2Fe-2S] cluster chirality, ligand exchange and transfer chemistry.</ArticleTitle>
<Pagination>
<MedlinePgn>1075-1087</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00775-017-1485-9</ELocationID>
<Abstract>
<AbstractText>Monothiol glutaredoxins (Grx) serve as intermediate cluster carriers in iron-sulfur cluster trafficking. The [2Fe-2S]-bound holo forms of Grx proteins display cysteinyl coordination from exogenous glutathione (GSH), in addition to contact from protein-derived Cys. Herein, we report mechanistic studies that investigate the role of exogenous glutathione in defining cluster chirality, ligand exchange, and the cluster transfer chemistry of Saccharomyces cerevisiae Grx3. Systematic perturbations were introduced to the glutathione-binding site by substitution of conserved charged amino acids that form crucial electrostatic contacts with the glutathione molecule. Native Grx3 could also be reconstituted in the absence of glutathione, with either DTT, BME or free L-cysteine as the source of the exogenous Fe-S ligand contact, while retaining full functional reactivity. The delivery of the [2Fe-2S] cluster to Grx3 from cluster donor proteins such as Isa, Nfu, and a [2Fe-2S](GS)
<sub>4</sub>
complex, revealed that electrostatic contacts are of key importance for positioning the exogenous glutathione that in turn influences the chiral environment of the cluster. All Grx3 derivatives were reconstituted by standard chemical reconstitution protocols and found to transfer cluster to apo ferredoxin 1 (Fdx1) at rates comparable to native protein, even when using DTT, BME or free L-cysteine as a thiol source in place of GSH during reconstitution. Kinetic analysis of cluster transfer from holo derivatives to apo Fdx1 has led to a mechanistic model for cluster transfer chemistry of native holo Grx3, and identification of the likely rate-limiting step for the reaction.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sen</LastName>
<ForeName>Sambuddha</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cowan</LastName>
<ForeName>J A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA. cowan.2@osu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>AI072443</GrantID>
<Agency>National Institutes of Health</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>08</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>J Biol Inorg Chem</MedlineTA>
<NlmUniqueID>9616326</NlmUniqueID>
<ISSNLinking>0949-8257</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008024">Ligands</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="C545181">Grx3 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008024" MajorTopicYN="N">Ligands</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013237" MajorTopicYN="N">Stereoisomerism</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Glutaredoxin</Keyword>
<Keyword MajorTopicYN="N">Glutathione</Keyword>
<Keyword MajorTopicYN="N">Grx3</Keyword>
<Keyword MajorTopicYN="N">Iron-sulfur cluster</Keyword>
<Keyword MajorTopicYN="N">Ligand exchange</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>05</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>08</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28836015</ArticleId>
<ArticleId IdType="doi">10.1007/s00775-017-1485-9</ArticleId>
<ArticleId IdType="pii">10.1007/s00775-017-1485-9</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2002 Jul 16;41(28):8876-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12102630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2013 Oct 9;135(40):15153-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24032439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Oct 6;12(4):373-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6203-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24733926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Jun 5;51(22):4377-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22583368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1982 Sep 14;21(19):4762-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6753926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2015 Oct;11(10):772-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26302480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2013 Jul 23;52(29):4904-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23796308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2016 Dec 7;8(12 ):1283-1293</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27878189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1996 Jun 1;237(2):260-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8660575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2007 Aug 15;110(4):1353-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Jul 23;35(29):9488-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8755728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2002 Apr 16;41(15):5024-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11939799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2014 Nov 19;136(46):16240-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25347204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Cell. 2012 Sep;3(9):714-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22886498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Oct 13;48(40):9569-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19715344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Aug 18;436(7053):1035-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16110529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Apr 9;27(7):1122-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18354500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2013 Sep 24;52(38):6633-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24032747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2016 Dec;590(24):4531-4540</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27859051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 2015 Jul-Sep;94(7-9):280-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26099175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1493-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25245479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Nov 21;283(47):32839-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18757366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Biol. 2016 Nov 18;11(11):3114-3121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27653419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2012 Jul 4;134(26):10745-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22687047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2016 Oct;21(7):825-836</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27538573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2000 Feb;5(1):2-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10766431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 May;267(9):2688-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10785391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Macromol. 2012 Oct;51(3):266-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22613454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Dec 25;46(51):15018-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18044966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Inorg Chem. 2016 Oct;21(7):887-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27590019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1513-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25264274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2015 Dec 30;137(51):16133-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26613676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1983;52:711-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6137189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Jul 1;15(1):19-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21299470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Aug 13;460(7257):831-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19675643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2011 Jan 15;433(2):303-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1978 Oct 31;17(22):4770-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">728385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dalton Trans. 2013 Mar 7;42(9):3107-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23292141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13735-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26483494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 30;281(26):17661-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2015 Jan 14;137(1):390-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25478817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Mar;1827(3):455-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23298813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jul 26;277(30):26944-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12011041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2014 Apr 14;50(29):3795-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24584132</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Sen, Sambuddha" sort="Sen, Sambuddha" uniqKey="Sen S" first="Sambuddha" last="Sen">Sambuddha Sen</name>
</noRegion>
<name sortKey="Cowan, J A" sort="Cowan, J A" uniqKey="Cowan J" first="J A" last="Cowan">J A Cowan</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000314 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000314 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28836015
   |texte=   Role of protein-glutathione contacts in defining glutaredoxin-3 [2Fe-2S] cluster chirality, ligand exchange and transfer chemistry.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28836015" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020